

Sirindhorn International Institute of Technology
 Thammasat University

School of Information, Computer and Communication Technology

ECS315 2016/1 Part V. 1 Dr.Prapun

11 Multiple Random Variables

One is often interested not only in individual random variables, but also in relationships between two or more random variables. Furthermore, one often wishes to make inferences about one random variable on the basis of observations of other random variables.

Example 11.1. If the experiment is the testing of a new medicine, the researcher might be interested in cholesterol level, blood pressure, and the glucose level of a test person.

11.1 A Pair of Discrete 1 andom Variables

In this section, we consider two discrete random variables, say X and Y, simultaneously.
11.2. The analysis are different from Section 9.2 in two main aspects. First, there may be no deterministic relationship (such as $Y=g(X)$) between the two random variables. Second, we want to look at both random variables as a whole, not just X alone or Y alone.

Example 11.3. Communication engineers may be interested in the input X and output Y of a communication channel. BSC

170

Example 11.4. Of course, to rigorously define (any) random variables, we need to go back to the sample space Ω. Recall Example 7.7 where we considered several random variables defined on the sample space $\Omega=\{1,2,3,4,5,6\}$ where the outcomes are equally likely. In that example, we define $X(\omega)=\omega$ and $Y(\omega)=(\omega-3)^{2}$.

Example 11.5. Consider the scores of 20 students below:

$$
\underbrace{10,9,10,9,9,10,9,10,10,9}_{\text {Room } \# 1}, \underbrace{1,3,4,6,5,5,3,3,1,3}_{\text {Room } \# 2} .
$$

The first ten scores are from (ten) students in room \#1. The last 10 scores are from (ten) students in room $\# 2$.

Suppose we have the a score report card for each student. Then, in total, we have 20 report cards.

Figure 31: In Example 11.5, we pick a report card randomly from a pile of cards.

I pick one report card up randomly. Let X be the score on that card.

- What is the chance that $X=10$? (Ans: $p_{X}(10)=P[X=10]=$ $5 / 20=1 / 4$.)
- What is the chance that $X>5$? (Ans: $P[X>5]=11 / 20$.)

Now, let the random variable Y denote the room $\#$ of the student whose report card is picked up.

- What is the probability that $X=10$ and $Y=2$?
- What is the probability that $X=10$ and $Y=1$?
- What is the probability that $X>5$ and $Y=1$?
- What is the probability that $X>5$ and $Y=2$?

Now suppose someone informs me that the report card which I picked up is from a student in room $\# 1$. (He may be able to tell this by the color of the report card of which I have no knowledge.) I now have an extra information that $Y=1$.

- What is the probability that $X>5$ given that $Y=1$?
- What is the probability that $X=10$ given that $Y=1$?
11.6. Recall that, in probability, "," means "and". For example,

$$
P[X=x, Y=y]=P[X=x \text { and } Y=y]
$$

and

$$
\begin{aligned}
P[3 \leq X<4, Y<1] & =P[3 \leq X<4 \text { and } Y<1] \\
& =P[X \in[3,4) \text { and } Y \in(-\infty, 1)] .
\end{aligned}
$$

In general, the event
["Some condition(s) on X ", "Some condition(s) on Y "]
is the same as the intersection of two events:
["Some condition(s) on X "] \cap ["Some condition(s) on Y "]
which simply means both statements happen.
More technically,

$$
[X \in B, Y \in C]=[X \in B \text { and } Y \in C]=[X \in B] \cap[Y \in C]
$$

and

$$
\begin{aligned}
P[X \in B, Y \in C] & =P[X \in B \text { and } Y \in C] \\
& =P([X \in B] \cap[Y \in C]) .
\end{aligned}
$$

Remark: Linking back to the original sample space, this shorthand actually says

$$
\begin{aligned}
{[X \in B, Y \in C] } & =[X \in B \text { and } Y \in C] \\
& =\{\omega \in \Omega: X(\omega) \in B \text { and } Y(\omega) \in C\} \\
& =\{\omega \in \Omega: X(\omega) \in B\} \cap\{\omega \in \Omega: Y(\omega) \in C\} \\
& =[X \in B] \cap[Y \in C] .
\end{aligned}
$$

11.7. The concept of conditional probability can be straightforwardly applied to discrete random variables. For example,

$$
\begin{equation*}
P \text { ["Some condition(s) on } X \text { " | "Some condition(s) on } Y \text { "] } \tag{26}
\end{equation*}
$$

is the conditional probability $P(A \mid B)$ where

$$
\begin{aligned}
& A=[\text { "Some condition(s) on } X "] \text { and } \\
& B=[\text { "Some condition(s) on } Y "] .
\end{aligned}
$$

Recall that $P(A \mid B)=P(A \cap B) / P(B)$. Therefore,

$$
P[X=x \mid Y=y]=\frac{P[X=x \text { and } Y=y]}{P[Y=y]}
$$

and

$$
P[3 \leq X<4 \mid Y<1]=\frac{P[3 \leq X<4 \text { and } Y<1]}{P[Y<1]}
$$

More generally, (26) is

$$
\begin{aligned}
& =\frac{P([\text { "Some condition(s) on } X "] \cap[\text { "Some condition(s) on } Y "])}{P([\text { "Some condition(s) on } Y "])} \\
& =\frac{P([\text { "Some condition(s) on } X \text { ","Some condition(s) on } Y "])}{P([\text { "Some condition }(\mathrm{s}) \text { on } Y "])} \\
& =\frac{P[\text { "Some condition(s) on } X \text { ","Some condition(s) on } Y "]}{P[\text { "Some condition }(\mathrm{s}) \text { on } Y "]}
\end{aligned}
$$

More technically,

$$
\begin{aligned}
P[X \in B \mid Y \in C] & =P([X \in B] \mid[Y \in C])=\frac{P([X \in B] \cap[Y \in C])}{P([Y \in C])} \\
& =\frac{P[X \in B, Y \in C]}{P[Y \in C]}
\end{aligned}
$$

Definition 11.8. Joint mf: If X and Y are two discrete random variables (defined on a same sample space with probability measure P), the function $p_{X, Y}(x, y)$ defined by Note that

$$
p_{X, Y}(x, y)=P\left[X=x_{0} Y=y\right] \quad \sum_{(a, y)} p_{x, y}(x, y)=1
$$

is called the joint probability mass function of X and Y.
(a) We can visualize the joint mf via stem plot. See Figure 32 , pairs (x, y)
(b) To evaluate the probability for a statement that involves both X and Y random variables:

$$
P[\text { condition (s) on } X \text { and/or } Y]
$$

We first find ${ }^{\sqrt{1}}$ all pairs (x, y) that satisfy the condition (s) in the statement, and the ${ }^{3}$ add up all the ${ }^{2}$ corresponding values from the joint mf.
More technically, we can then evaluate $P[(X, Y) \in R]$ by

$$
P[(X, Y) \in R]=\sum_{(x, y):(x, y) \in R} p_{X, Y}(x, y) .
$$

Example 11.9 (F2011). Consider random variables X and Y whose joint mf is given by

$$
\begin{aligned}
& \quad p_{X, Y}(x, y)=\left\{\begin{array}{lll}
c(x+y), & x \in\{1,3\} \\
0, & \text { otherwise. and } y \in\{2,4\}, \\
\text { (a) Check that } c=1 / 20 . & x^{2}+y^{2} & (x, y) \quad P_{x, y}(x, y)
\end{array}\right. \\
& \text { (x) possible cases }
\end{aligned}
$$

$3 c=3 / 20$
$\sum_{(x, y)} P_{X, Y}(n, y)=1 \Rightarrow 20 c=1$
(b) Find $P\left[X^{2}+Y^{2}=13\right]$.

(c) $P\left[x^{2}+y^{2}<20\right]=3 c+5 c+5 c=13 c$

$$
=13 / 20
$$

$3 C=3 / 20$
$5 c=5 / 20$
$\underbrace{5 c}=5 / 20$
$7 C=7 / 20$
4

In most situation, it is much more convenient to focus on the "important" part of the joint pmf. To do this, we usually present the joint mf (and the conditional mf) in their matrix forms:

Definition 11.10. When both X and Y take finitely many values (both have finite supports), say $S_{X}=\left\{x_{1}, \ldots, x_{m}\right\}$ and $S_{Y}=$ $\left\{y_{1}, \ldots, y_{n}\right\}$, respectively, we can arrange the probabilities $p_{X, Y}\left(x_{i}, y_{j}\right)$ in an $m \times n$ matrix

$$
\left.\begin{array}{ccccc}
\boldsymbol{x}^{\boldsymbol{y}} & y_{1} & \mathbf{y}_{\mathbf{2}} & \ldots & \boldsymbol{y}_{\text {n }} \tag{27}\\
\boldsymbol{x}_{\mathbf{1}} \\
\boldsymbol{x}_{\mathbf{2}} & p_{X, Y}\left(x_{1}, y_{1}\right) & p_{X, Y}\left(x_{1}, y_{2}\right) & \ldots & p_{X, Y}\left(x_{1}, y_{n}\right) \\
\vdots & p_{X, Y}\left(x_{2}, y_{1}\right) & p_{X, Y}\left(x_{2}, y_{2}\right) & \ldots & p_{X, Y}\left(x_{2}, y_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\boldsymbol{x}_{m} & p_{X, Y}\left(x_{m}, y_{1}\right) & p_{X, Y}\left(x_{m}, y_{2}\right) & \ldots & p_{X, Y}\left(x_{m}, y_{n}\right)
\end{array}\right] .
$$

- We shall call this matrix the joint pmf matrix.
- The sum of all the entries in the matrix is one.

$$
\sum_{(x, y)} P_{x, y}(x, y)=1
$$

Figure 32: Example of the plot of a joint pmf. [9, Fig. 2.8]

- $p_{X, Y}(x, y)=0$ if ${ }^{48} x \notin S_{X}$ or $y \notin S_{Y}$. In other words, we don't have to consider the x and y outside the supports of X and Y, respectively.

[^0]11.11. From the joint pmf, we can find $p_{X}(x)$ and $p_{Y}(y)$ by
\[

$$
\begin{align*}
p_{X}(x) & =\sum_{y} p_{X, Y}(x, y) \tag{28}\\
p_{Y}(y) & =\sum_{x} p_{X, Y}(x, y) \tag{29}
\end{align*}
$$
\]

In this setting, $p_{X}(x)$ and $p_{Y}(y)$ are call the marginal pmfs (to distinguish them from the joint one).
(a) Suppose we have the joint pmf matrix in (27). Then, the sum of the entries in the i th row is ${ }^{49} p_{X}\left(x_{i}\right)$, and the sum of the entries in the j th column is $p_{Y}\left(y_{j}\right)$:

$$
p_{X}\left(x_{i}\right)=\sum_{j=1}^{n} p_{X, Y}\left(x_{i}, y_{j}\right) \quad \text { and } \quad p_{Y}\left(y_{j}\right)=\sum_{i=1}^{m} p_{X, Y}\left(x_{i}, y_{j}\right)
$$

(b) In MATLAB, suppose we save the joint pmf matrix as P_XY, then the marginal pmf (row) vectors $\mathrm{p}_{-} \mathrm{X}$ and $\mathrm{p}_{-} \mathrm{Y}$ can be found by

$$
\begin{aligned}
& p_{-} X=\left(\operatorname{sum}\left(P_{-} X Y, 2\right)\right) \\
& p_{-} Y=\left(\operatorname{sum}\left(P_{-} X Y, 1\right)\right)
\end{aligned}
$$

Example 11.12. Consider the following joint pmf matrix

$$
\text { Ex. } \quad P_{X \mid Y}(0 \mid 1)=P[X=0 \mid Y=1]
$$

Definition 11.13. The conditional mf of X given Y is defined as

$$
\begin{aligned}
& \quad p_{X \mid Y}(x \mid y)=P[\overbrace{X=x} \mid \overbrace{Y=y}]=P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P_{X, Y}(\alpha, y)}{P_{Y}(y)} \\
& P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)
\end{aligned}
$$

which gives

$A \quad B$

$$
\begin{equation*}
\longrightarrow p_{X, Y}(x, y)=p_{X \mid Y}(x \mid y) p_{Y}(y)=p_{Y \mid X}(y \mid x) p_{X}(x) . \tag{30}
\end{equation*}
$$

11.14. Equation (30) is quite important in practice. In most cases, systems are naturally defined/given/studied in terms of their conditional probabilities, say $p_{Y \mid X}(y \mid x)$. Therefore, it is important the we know how to construct the joint mf from the conditional mf.

Example 11.15. Consider a binary symmetric channel. Suppose $\left.P_{Y \mid X}(1) 0\right)=0.1$ the innי1 X to the channel is Bernoulli (0.3). At the output Y of $P_{Y \mid X}(0 \mid 1)=0.1$ this channel, the crossover (bit-flipped) probability is 0.1. Find $Y \mid X$ the joint mf $p_{X, Y}(x, y)$ of X and Y.
$p_{X, Y}(x, y)=p_{Y, X}(y \mid x) p_{X}(x)$
$P_{Y \mid X}(0 \mid 0)=0.9$
$P_{x}(x)=\left\{\begin{array}{cc}0.3, & x=1, \\ 0.7, & x=0, \\ 0, & \text { otverwi.e. }\end{array}\right.$

Exercise 11.16. Toss-and-Roll Game:
Step 1 Toss a fair coin. Define X by

$$
X= \begin{cases}1, & \text { if result }=\mathrm{H}, \\ 0, & \text { if result }=\mathrm{T}\end{cases}
$$

$$
P_{Y}(y)=\left\{\begin{array}{lc}
0.66, & y=0, \\
0.34, & y=1, \\
0, & \text { otherwise. }
\end{array}\right.
$$

Step 2 You have two dice, Dice 1 and Dice 2. Dice 1 is fair. Dice 2 is unfair with $p(1)=p(2)=p(3)=\frac{2}{9}$ and $p(4)=p(5)=p(6)=$ $\frac{1}{9}$.
(i) If $X=0$, roll Dice 1 .
(ii) If $X=1$, roll Dice 2 .

Record the result as Y.
Find the joint mf $p_{X, Y}(x, y)$ of X and Y.
Exercise 11.17 (F2011). Continue from Example 11.9. Random variables X and Y have the following joint mf

$$
p_{X, Y}(x, y)= \begin{cases}c(x+y), & x \in\{1,3\} \text { and } y \in\{2,4\}, \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find $p_{X}(x)$.
(b) Find $\mathbb{E} X$.
(c) Find $p_{Y \mid X}(y \mid 1)$. Note that your answer should be of the form

$$
p_{Y \mid X}(y \mid 1)= \begin{cases}?, & y=2 \\ ?, & y=4 \\ 0, & \text { otherwise }\end{cases}
$$

(d) Find $p_{Y \mid X}(y \mid 3)$.
$1-D$

0

Definition 11.18. The joint $\boldsymbol{c d f}$ of X and Y is defined by

$$
F_{X, Y}(x, y)=P[X \leq x, Y \leq y]
$$

Definition 11.19. Two random variables X and Y are said to be identically distributed if, for every $B, P[X \in B]=P[Y \in B]$.

Example 11.20. Roll a dice twice. Let X be the result from the first roll. Let Y be the result from the second roll.

- X and Y are not the same. (Most of the time, they will be different. By chance, they occasionally take the same value.)

$$
\begin{aligned}
& P[X>3]=P[Y>3] \\
& P[|X-5|=1]=P[|Y-5|=1] \\
& \text { In words, for any probability statement about } X \text { (and only } X \text {) } \\
& \text { if we replace } X \text { by } Y \text {, we get the same probability. }
\end{aligned}
$$

$$
\begin{array}{ccc}
x & p_{x}(a) & z=1-x \\
0 & 1 / 2 & 1 \\
1 & 1 / 2 & 0
\end{array}
$$

$$
P_{z}(3)= \begin{cases}1 / 2, & z=0,1, \\ 0, & \text { otherwise } .\end{cases}
$$

Example 11.21. Let $X \sim \operatorname{Bernoulli}(1 / 2)$. Let $Y=X$ and $Z=1-X$. Then, all of these random variables are identically distributed.
11.22. The following statements are equivalent:
(a) Random variables X and Y are identically distributed.

Any statement
defined using
(b) For every $B, P[X \in B]=P[\underbrace{Y \in B}_{K}]$
(c) $p_{X}(c)=p_{Y}(c)$ for all c
(d) $F_{X}(c)=F_{Y}(c)$ for all c

$$
\text { but replace } x \text { by } y
$$

Definition 11.23. Two random variables X and Y are said to be independent if the events $[X \in B]$ and $[Y \in C]$ are independent for all sets B and C.

Review: Events A and B
11.24. The following statements are equivalent: are indef em dent of
(a) Random variables X and Y are independent. $P(A \cap B)=P(A) P(B)$ very powerful
easy to apply
but
(b) $[X \in B] \Perp[Y \in C]$ for all B, C.
difficult to show
(d) $p_{X, Y}(x, y)=p_{X}(x) \times p_{Y}(y)$ for all x, y.
$=P[x>7] P[Y<3]$
(e) $F_{X, Y}(x, y)=F_{X}(x) \times F_{Y}(y)$ for all $x, y . \quad \mathrm{P}[\mathrm{X}=\boldsymbol{\alpha}, \mathrm{Y}=\mathrm{y}]=\mathrm{P}[\mathrm{X}=\mathrm{x}] \mathrm{P}[\mathrm{Y}=y]$

Definition 11.25. Two random variables X and Y are said to be independent and identically distributed (ibid.) if X and
Y are both independent and identically distributed.
11.26. Being identically distributed does not imply independence. Similarly, being independent, does not imply being identically distributed.

Example 11.27. Roll a dice. Let X be the result. Set $Y=X$.
(1) X, Y i.d.? $\quad P_{Y}(c)=p_{X}(c) \quad \forall c$?

$$
P_{Y}(c)=P[Y=c]=P[x=c]=P_{X}(c) \text { for any } c
$$

Therefor, x and y are identically distributed.
(2)

$$
\begin{gathered}
P_{X, Y}(1,1) \equiv P[X=1, Y=1]=P[Y=1 \mid X=1] P[X=1]=1 \times \frac{1}{6}=1 / 6 \\
P_{X}(1)=\frac{1}{6}=P_{Y}(1) \leftarrow i . d . \quad P_{X, Y}(1,1) \neq P_{X}(1) P_{Y}(1)
\end{gathered}
$$

Example 11.28. Suppose the pmf of a random variable X is given $\Rightarrow \times \not \Perp Y$ by

$$
p_{X}(x)= \begin{cases}1 / 4, & x=3 \\ x, 3 / 4 & x=4 \\ 0, & \text { otherwise }\end{cases}
$$

Let Y be another random variable. Assume that X and Y are (id.

Find
(a) α,

$$
\sum_{x} p_{x}(x)=1 \Rightarrow \frac{1}{4} \quad \alpha=1 \Rightarrow \alpha=\frac{3}{4}
$$

(b) the emf of Y, and
(c) the joint mf of X and Y.
(c) Because X and Y are
\rightarrow indepghdent,
(b) Because x and Y are identically distributed, we have $P_{Y}(c)=P_{X}(c)$ for any c.

$$
P_{X, Y}(x, y)=P_{X}(x) P_{Y}(y)
$$

In particular,

$$
x y_{y} 3
$$

$$
\begin{aligned}
& P_{Y}(y)=p_{X}(y)=\left\{\begin{array}{lll}
1 / 4, & y=3, & 3 \\
3 / 4, & y=4, & 4\left[\begin{array}{ll}
\frac{1}{4} \times \frac{1}{4} & \frac{1}{4} \times \frac{3}{4} \\
0, & \text { otherwise. }
\end{array}\right. \\
\frac{3}{4} \times \frac{1}{4} & \frac{3}{4} \times \frac{3}{4}
\end{array}\right] \\
&=3\left[\begin{array}{ll}
1 / 16 & 3 / 12 \\
3 / 16 & 9 / 16
\end{array}\right] \\
& P_{X, Y}(x, y)= \begin{cases}1 / 16, & (x, y)=(3,3), \\
3 / 16, & (x, y)=(3,4) \text { or }(4,3), \\
9 / 16, & (x, y)=(4,4), \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Example 11.29. Consider a pair of random variables X and Y whose joint mf is given by

$$
\begin{array}{r}
\sum_{(x, y)} P_{x, y}(x, y)=1 \\
\frac{1+2+4}{15}+\beta=1 \\
\beta=8 / 15
\end{array} \quad p_{X, Y}(x, y)=\left\{\begin{array}{ll}
1 / 15, & x=3, y=1, \\
2 / 15, & x=4, y=1 \\
4 / 15, & x=3, y=3 \\
\beta 8 / 15=4, y=3 \\
0, & \text { otherwise }
\end{array}\right\}
$$

(a) Are X and Y identically distributed? No
(b) Are X and Y independent? Yes
(a)

$$
\begin{aligned}
& x \vee 1 \quad 3
\end{aligned}
$$

$$
\begin{aligned}
& P_{x}(x)= \begin{cases}1 / 3, & x=3, \\
2 / 3, & x=4, \\
0, & \text { otherwise } .\end{cases} \\
& P_{Y}(y)= \begin{cases}1 / 5, & y=1, \\
4 / 5, & y=3, \\
0, & \text { otherni,e } .\end{cases}
\end{aligned}
$$

so, x and y are not identically distributed. (For example, consider $c=3$;

$$
\left.p_{X}(c)=\frac{1}{3} \neq \frac{1}{5}=p_{Y}(c) .\right)
$$

$$
\begin{aligned}
& \text { (b) } p_{X, Y}(x, y) \stackrel{?}{=} p_{X}(x) p_{Y}(y) \\
& x>13 \\
& 4\left[\begin{array}{ll}
\frac{1}{3} \times \frac{1}{5} & \frac{1}{3} \times \frac{4}{5} \\
\frac{2}{3} \times \frac{1}{5} & \frac{2}{3} \times \frac{4}{5}
\end{array}\right]
\end{aligned}
$$

Because

$$
p_{X, Y}(n, y)=p_{X}(n) p_{Y}(y)
$$

for all x, y,
we conclude that

$$
X \Perp Y
$$

Back to discrete $R V_{s}$.
One RV
pm: $p_{x}(x)=P[x=x]$
Two RVs
joint mf: $p_{X, Y}(\alpha, y)=P[x=x, y=y]$.
summarized by a joint poof matrix

$$
P_{x, y}=[\quad]
$$

marginal pots

$$
\begin{aligned}
P_{X}(x)=\sum_{y} P_{X, Y}(x, y) \leftarrow & \leftarrow \text { sum along the } \\
& \text { corresponding row of } P_{X, Y}
\end{aligned}
$$

identically distributed: $p_{X}(c)=P_{Y}(c)$ for all c
(same poof)
independent : $p_{X, Y}(x, y)=p_{X}(x) x_{x} p_{Y}(y)$
multiplication

$$
\vec{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \quad \vec{x}=\left(\begin{array}{c}
x_{1} \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

11.2 Extending the Definitions to Multiple RVs

Definition 11.30. Joint pmf:

$$
p_{\vec{X}}(\vec{x})=p_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left[X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right] .
$$

Joint pdf:

$$
F_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left[X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{n} \leq x_{n}\right]
$$

11.31. Marginal pmf:

Example 11.35. Roll dice times. Let N_{i} be the result of the i th roll. We then have another collection of i.i.d. random variables $N_{1}, N_{2}, N_{3}, \ldots, N_{n}$.

Example 11.36. Let X_{1} be the result of tossing a coin. Set $X_{2}=$ $X_{3}=\cdots=X_{r}=X_{1}$.
Then, all the x_{i} 's are Bernoulli: $(r) \Rightarrow$ They are identically distributed.
However, they are not independent.
11.37. If $X_{1}, X_{2}, \ldots, X_{n}$ are independent, then so is any subcollection of them.

Definition 11.39. A pairwise independent collection of random variables is a collection of random variables any two of which are independent.
(a) Any collection of (mutually) independent random variables is pairwise independent
(b) Some pairwise independent collections are not independent. See Example (11.40).
$\left\{\begin{array}{l}1 / 4, x, y \in\{0,1\} \\ \text { Example 11.40. Let suppose } X, Y \text {, and } Z \text { have the following } P_{x}(n)\end{array}\right.$ $\begin{array}{ll}P_{x}(x)\end{array}= \begin{cases}1 / 2, & x=0,1 \\ 0, & \text { otherwise }\end{cases}$ (0, otherwise joint probability distribution: $p_{X, Y, Z}(x, y, z)=\frac{1}{4}$ for $(x, y, z) \in$
$\| \quad\{(0,0,0),(0,1,1),(1,0,1),(1,1,0)\}$. This, for example, can be con$P_{x y}(x, y) \quad$ structed by starting with independent X and Y that are Bernoulli$\frac{1}{2}$. Then set $Z=X \oplus Y=X+Y \bmod 2$.

$$
=P_{x}(x) P_{y}\left(y^{2}\right) \text { (a) } X, Y, Z \text { are pairwise independent. }
$$

$$
P_{Y, z}(y, z)
$$

(b) X, Y, Z are not independent.

$$
=p_{Y}(y) p_{Z}(z)
$$

$p_{x, z}(x, z)$

$$
=P_{x}(x) p_{z}(z)
$$

$$
\begin{aligned}
P_{X, Y, Z}(x, y, z) & =p_{X}(a) p_{Y}(y) p_{Z}(z) \\
P_{X, Y, Z}(1,1,1) & \stackrel{ }{=} P_{X}(1) P_{Y}(1) P_{84}(1) \\
0 & \neq \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}
\end{aligned}
$$

[^0]: ${ }^{48}$ To see this, note that $p_{X, Y}(x, y)$ can not exceed $p_{X}(x)$ because $P(A \cap B) \leq P(A)$. Now, suppose at $x=a$, we have $p_{X}(a)=0$. Then $p_{X, Y}(a, y)$ must also $=0$ for any y because it can not exceed $p_{X}(a)=0$. Similarly, suppose at $y=a$, we have $p_{Y}(a)=0$. Then $p_{X, Y}(x, a)=0$ for any x.

